Heating, Ventilation, and Air Conditioning (HVAC) System Design with a concentration in indoor air quality

Company Client / Industry Advisor:

Kyle Sands, P.E. Director of Mechanical Engineering / Partner

Industry Advisor: John Papik Mechanical Engineer

Academic Advisor: Dr. Stefan Moldovan

Student Team: Caroline Griswold Sahaj Thapa Sandesh Neupane

Youngstown STATE UNIVERSITY.

Company Background

EPIC Engineering Group, LLC

• Full-service MEP (mechanical, electrical, plumbing) Design Firm

Project Statement

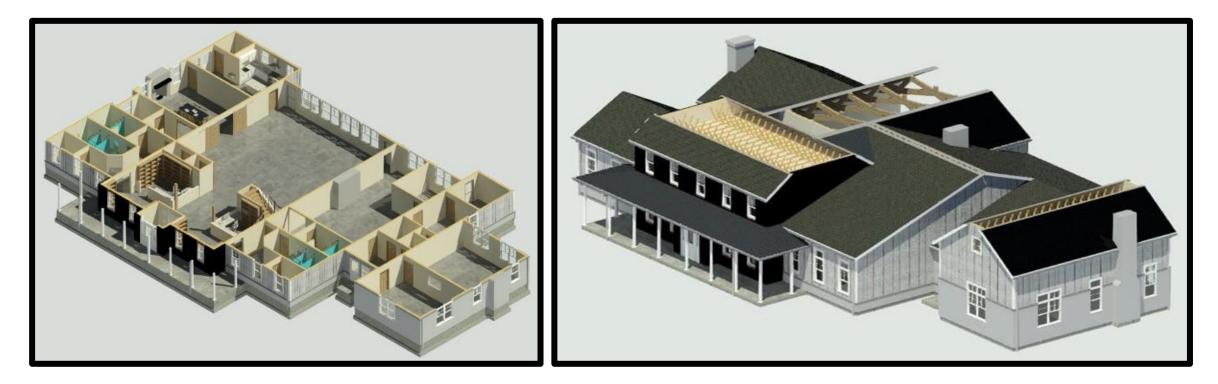
- Design an HVAC system for a proposed office building
- Implement ventilation strategies for preventing the spread of COVID-19



Image source: [1

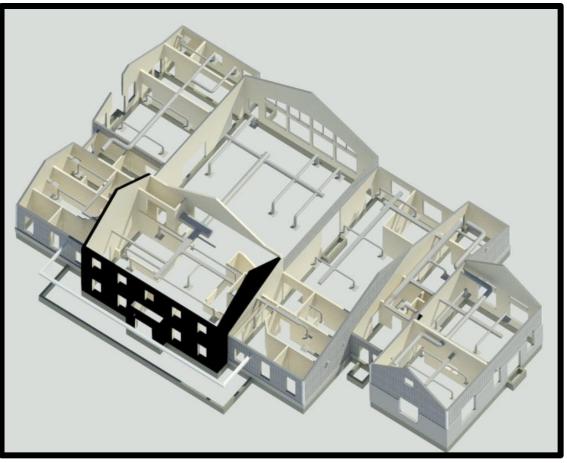
Customer Needs

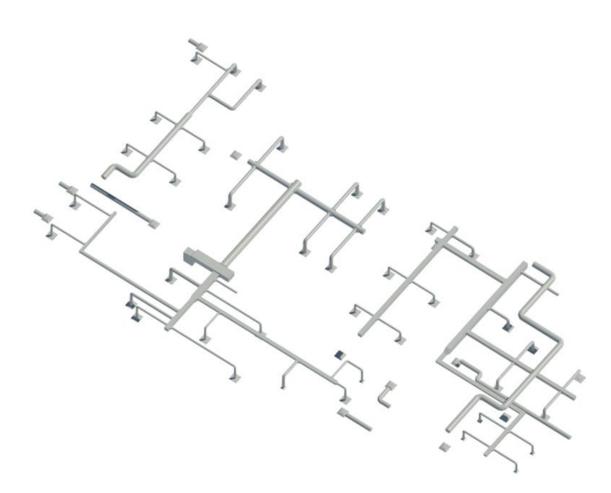
- Load Calculation
- Compliance with ASHRAE


The American Society of Heating, Refrigeration and Air-Conditioning Engineers

- HVAC System Design
- Flow Regulation
- Indoor Air Quality
- Insulation

Target Specifications


- Flow Rates
- Air Velocity
- Meet Standards (ASHRAE) Requirements
- Low Percent Errors


Building Overview

One story office building with 31 rooms (roughly 7,000 square feet)

Final Design Overview – Duct System

Factors influencing decisions:

- Building Structure
- Heating Load Calculations
- Pressure Drop Calculations
- ASHRAE Compliance

Supply Air Styles

Mixed Ventilation

- Supply from ceiling
- Return to ceiling
- Most practical design given building structure

Exposed Ductwork

• Rooms with a vaulted ceiling and no space for hidden duct system

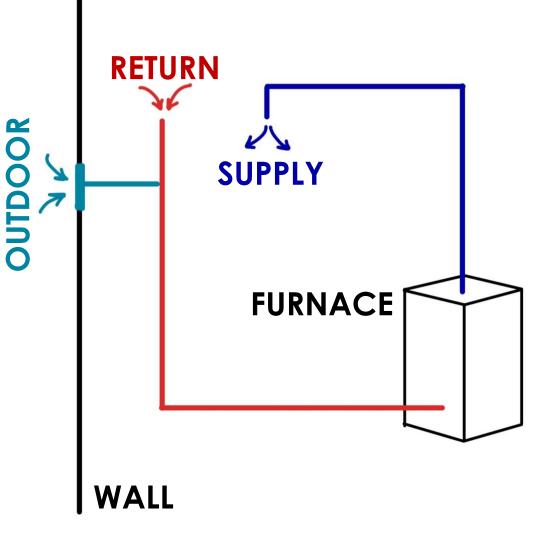


Image source: [3]

Image source: [4]

Return, Exhaust, and Outdoor Air

EXHAUST

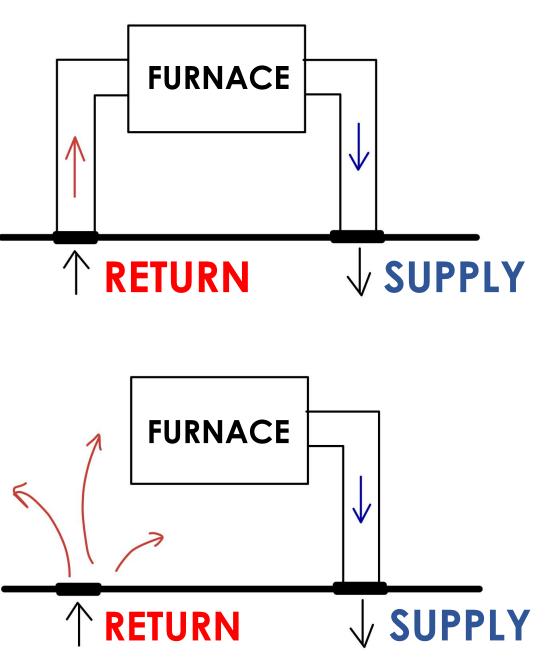

• Leaves the building

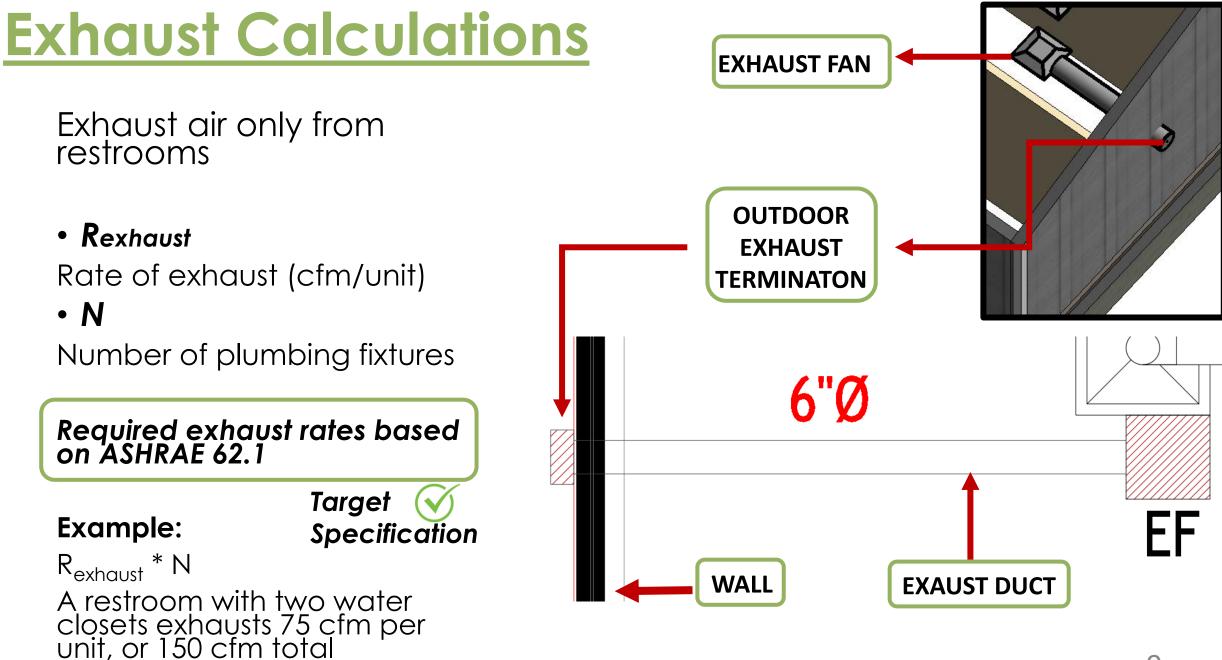
RETURN

• Gets "recycled" back to the furnace

OUTDOOR

- Mixes with return to add fresh air to the building
- Prevents CO₂ from becoming prominent in air
- Gets conditioned (heated or cooled) to prevent adding humid / cold air to building, ensures thermal comfort


Return Styles

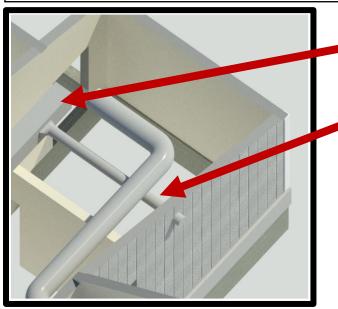

Ducted (Forced) Return

- Necessary in areas lacking a useful plenum space
- Duct sized calculated the same way as supply
- Used in areas where plenums are not allowed, per the Ohio Mechanical Code

Plenum (Free) Return

- Inexpensive (no ductwork required)
- Utilized wherever possible

Ventilation (Outdoor Air) Calculations


- Vbz : Breathing Zone Outdoor Airflow
- Ez : Zone Air Distribution Effectiveness 0.8 for ceiling supply, ceiling return
- Vot : Required Zone Outdoor Airflow
- P : Occupants
- A : Floor Area
- **R**a : Airflow Rate based on Floor Area
- **Rp** : Airflow Rate based on Occupants

Required values based on ASHRAE 62.1 Target Specification

$$V_{bz} = PR_p + AR_a$$
$$V_{ot} = \frac{V_{bz}}{E_z}$$

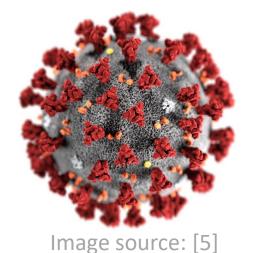
Ventilation Requirement Results

ROOM NAME	AREA (ft ²) ROO/		OOM TYPE OCCUPANT DENSITY (/1000 ft ²)	OCCUPANTS	CFM PER PERSON	CFM PER ft ²		TOTAL	
		ROOM TYPE					Vbz	Ez	Vot
OFFICE	184	OFFICE SPACE	5	1	5	0.06	15.6	0.8	19.6
CLOSET	14.1	STORAGE ROOMS	0	0	0	0.12	1.7	0.8	2.1
MECH	138.7	STORAGE ROOMS	0	0	0	0.12	16.6	0.8	20.8
VESTIBULE	142.9	OFFICE-LOBBY	10	1	5	0.06	15.7	0.8	19.6
CLOSET	26	STORAGE ROOMS	0	0	0	0.12	3.1	0.8	3.9
TPS CONTROL ROOM	404.6	OFFICE SPACE	5	2	5	0.06	34.4	0.8	43.0
TPS STUDIO	495.4	OFFICE SPACE	5	2	5	0.06	42.1	0.8	52.6
								TOTAL REQ'D:	239.1

RETURN AIR DUCT OUTDOOR AIR DUCT (8"Ø)

239* CFM of outdoor air required – brought in from outside through louvers

$\textbf{239 CFM} \rightarrow \textbf{8"}\textbf{\emptyset} \textbf{ DUCT}$


*for the calculation shown, some rooms were excluded for the sake of clarity. 11

Infection Control Bipolar Ionization VS UV-C

- Limitations of BI:
 - Specially used for allergens, dust and chemical particulates
 - Require specific electric potential for specific size of virus or bacteria.

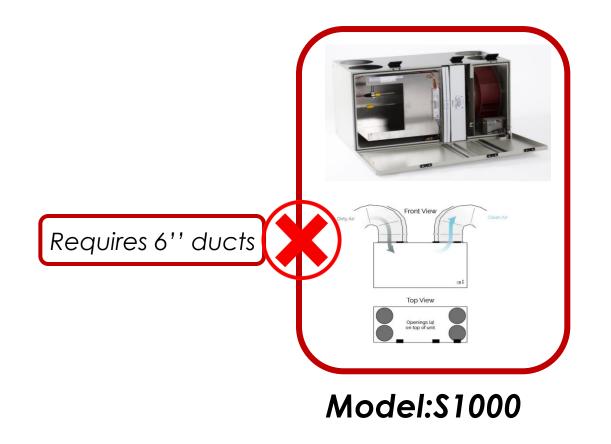
• Why UV-C over Bipolar

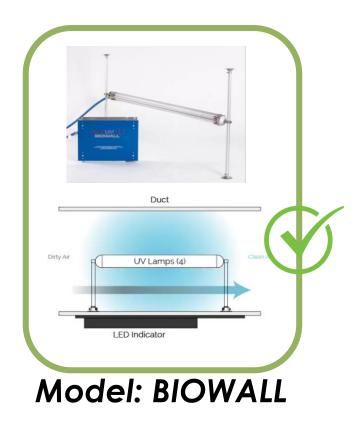
- Used for last two decade primarily in health care environment.
- Designed specifically to eliminate bacterial or viral particles.
- UV satisfies target specification.

UV Lights Selection

Sized based on:

- Infection Control Needs (Covid, Flu, etc.)
- Velocity of supply air
- Duct size and shape
- Number of UV lamps


Image Credit: Nevada HVAC


Infection control increases the longer air is in contact with lights

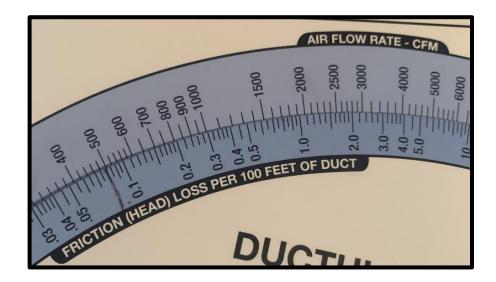
Available UV Lights

- Air Disinfection Units were manufactured by **Sanuvox**.
- Models \$1000 and Biowall were compared.
- S1000 fits with 6'' ducts which does not fit our designed duct.

UV Light: Biowall

Properties:

- UV Lamp Length: 24 in
- No of Lamps: 5
- Lamp Change out time: 17,000 hours
- Lamp Warranty: 3 years
- Run parallel to airstream
- One set of lamp is placed in supply duct of each zone.
- Fits in any duct system.
- Easy to replace.
- Helps purify odor too.


Additional Analyses

Confirming Industry Standards

• Pressure drop calculations

Lifecycle Cost Analysis

- Furnaces
- Fan-coil Units
- Variable Refrigerant Flow

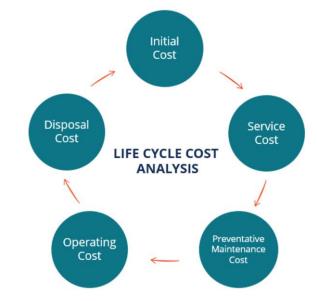


Image Credit: Corporate Finance

Duct Dimensions and Properties

Supply Branch

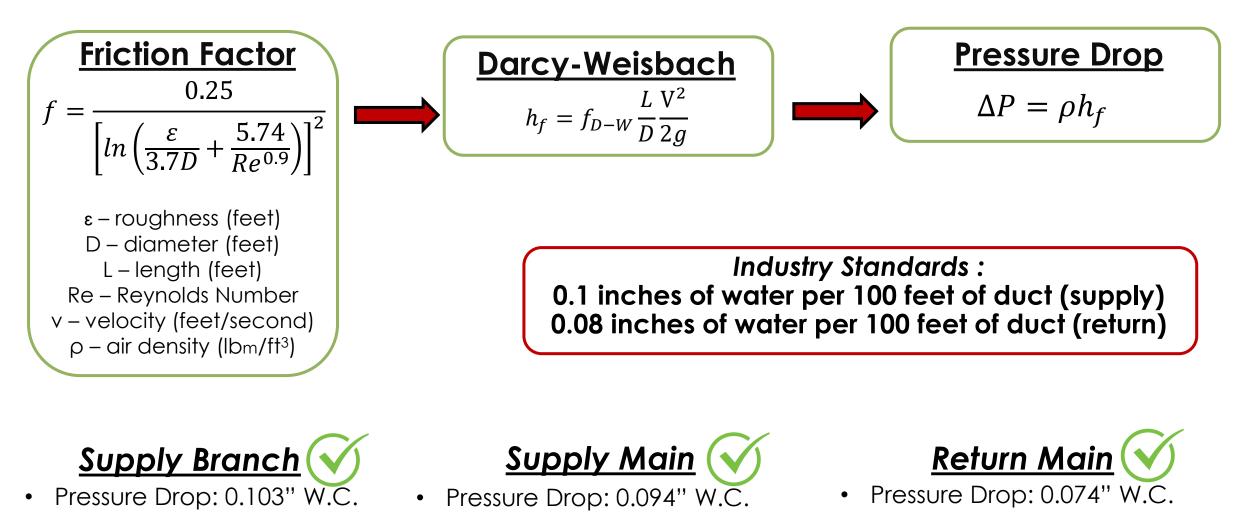
- Galvanized Steel
- (roughness = 0.00049 ft)
- 10" Ø diameter
- 8'-6" in length
- (100' for comparison)

<u>Supply Main</u>

- Galvanized Steel
- (roughness = 0.00049 ft)
- 26"x18" (21.3"Ø hydraulic)
- 7'-6" in length
- (100' for comparison)

Image Credit: Direct Industry

<u>Return Main</u>


- Galvanized Steel
- (roughness = 0.00049 ft)
- 12"x8" (9.6"Ø hydraulic)
- 7'-1" in length
- (100' for comparison)

<u>Target</u>	\bigcirc
Specific	<u>ation</u>

Maximum Duct Velocities (FPM)					
	Ma	in Ducts	Branch Ducts		
Application	Supply	Return	Supply	Return	
General Offices	2000	1500	1600	1200	

[19] Engineering Cookbook (2018)

Pressure Drop Calculations

Results confirm industry standards are valid.

Lifecycle Cost Analysis

- Assessing total cost of building including:
 - Purchase
 - Installation
 - Operation
- Useful when project have different alternatives
- Select most cost-efficient system.

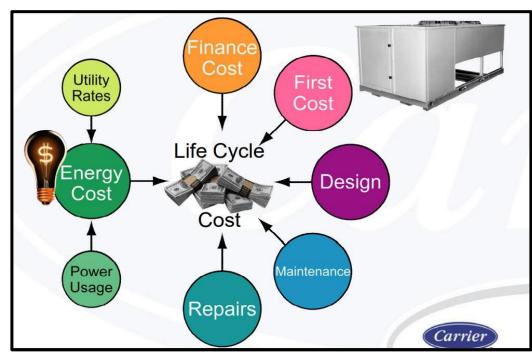


Image credit: Carrier

Image credit: Lucrum consulting

Analysis was done using

Engineering Economic Analysis

(EEA) by Carrier

BENEFIN

Systems Compared for LLC

Image credit: Mitsubishi Electric

Image credit: Carrier

Variable refrigerant flow

SAM SUNG

Image credit: Samsung

- Selected based on Energy Efficiency
- Heating and Cooling Capacity, Heating efficiency, fan power were noted.
- Properties used as input for Software

Assumptions:

- Annual energy Cost: Annual energy usage and maintenance cost.
- Energize one hour before the building is occupied
- Deenergize one hour after the building is unoccupied.
- No outdoor air in unoccupied mode.

	Electric Cost	2.5 %/year	
Escalation Rate	Natural Gas Cost	4 %/year	
	Maintenance	2 %/year	

[18] RMF Engineering (2018)

Escalation rate:

Change in cost goods in each economy over a period

Image credit: Times communication

Cost Analysis

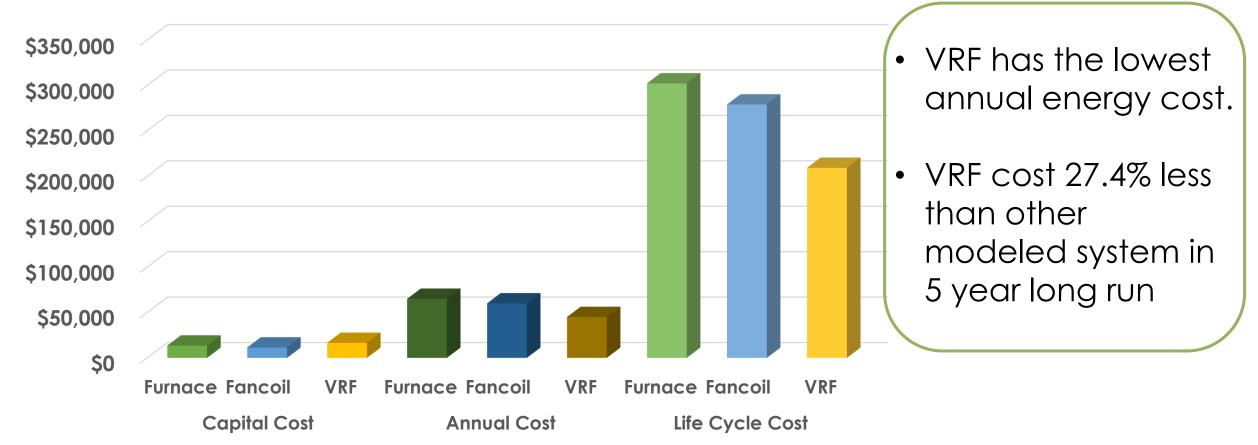
	GAS FURNACE	ELECTRIC FANCOIL	VARIABLE REFRIGERANT FLOW
Purchase	\$2340/UNIT	\$2000/UNIT	\$3600/UNIT
Install	\$3500	\$2500	\$4200
Fuel Cost/year	\$42800	\$36500	\$34200
Maintenance/year	\$1200	\$800	\$600

[18] RMF Engineering (2013)

$$LCC = Capital \ Cost + \sum_{n=1}^{p} \frac{C_n}{(1+d)^n} \qquad [18] \ RMF \ Engineering \ (2013)$$

Where LCC: Life-cycle Cost

 C_n : costs occurred in year

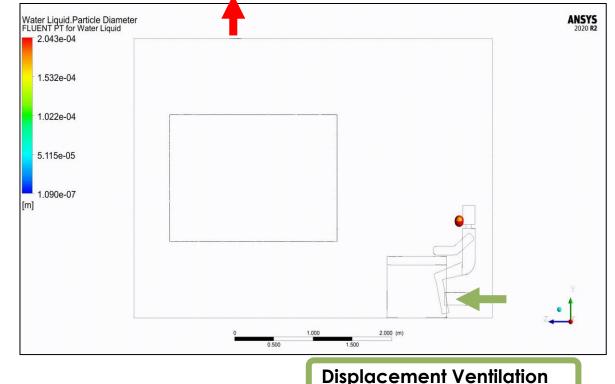

d: expected real discount rate per annum

p: period of analysis

n: number of years between base data and occurrence of the cost

Lifecycle Cost Analysis:

5 Year Cost of Building



Further Improvements:

Duct System with Displacement Ventilation

- Better for infection control in the room however expensive to install.
- Supply requires underground duct system which is not feasible.
- Limited to specific building.
- VRF System
 - Expensive installation but could be considered.

Pros: Energy efficient, variable capacity, compactCons: No/poor unit connection for outdoor air (ventilation issues)

Timeline/Schedule Summary

Winter Break Plan	
Task	Completion Date
Refine supply air ductwork system	12/23/2020
Coordinate duct sizes with structural plans	1/6/2021
Transfer AutoCAD files to REVIT	1/6/2021
Spring Semester Plan	
Task	Completion Date
Add return air, outdoor air, and exhaust to system	1/20/2021
Incorporate displacement ventilation where possible	2/5/2021
Cost analysis / equipment selection for UV lights / bipolar ionization	2/19/2021
Adjustments to system based on EPIC's review	3/5/2021
Additional analyses per EPIC's requests	N/A

QUESTIONS?

References:

[1] How Air Duct Systems Work: Superior Air Duct Cleaning. (2019, December 17). Retrieved December 03, 2020, from https://superiorairduct.com/how-does-an-air-duct-system-work/

[2] Beverly, R. (2020, July 01). COVID-19 Reveals Importance of UV-C in HVAC Industry. Retrieved December 03, 2020, from

https://www.achrnews.com/articles/143318-covid-19-reveals-importance-of-uv-c-in-hvac-industry

[3] Carrier. (n.d.). Hourly Analysis Program: Carrier Carrier Commercial North America. Retrieved December 03, 2020, from

https://www.carrier.com/commercial/en/us/software/hvac-system-design/hourly-analysis-program/

[4] Adding Zones to Your HVAC System. (n.d.). Retrieved December 03, 2020, from https://www.pvhvac.com/blog/should-you-add-zones-to-your-existing-hvac-system

[5] Energy Standard for Buildings Except Low-Rise Residential Buildings. (2019). ASHRAE.

[6] Colebrook Equation. (n.d.). Retrieved December 03, 2020, from https://www.sciencedirect.com/topics/engineering/colebrook-equation

[7] Waclo, S., Perry, W., Nia, F., & Podgurski, T. (2017, June 01). Duct Design 4 - Calculating Friction Rate. Retrieved December 03, 2020, from https://www.energyvanguard.com/blog/duct-design-4-calculating-friction-rate

[8] Engineering Cookbook. (2015). Springfield, Missouri: Loren Cook Company.

[9] Titus HVAC: Engineering Innovative Air Distribution Solutions: Redefine Your Comfort Zone. (n.d.). Retrieved December 03, 2020, from http://www.titus-hvac.com/

[10] Carrier. (n.d.). Infinity 98 Gas Furnace With Greenspeed - 59MN7: Carrier - Home Comfort. Retrieved December 03, 2020, from https://www.carrier.com/residential/en/us/products/furnaces/59mn7/

[11] Shop All Departments at Menards®. (n.d.). Retrieved December 3, 2020, from https://www.menards.com/main/shop-all-departments/c-19384.htm

27

[12] Young Regulator. (2020, May 29). 5020R: Balancing Damper w/ Locking Quadrant. Retrieved December 03, 2020, from

https://www.youngregulator.com/product/5020r-w-locking-quad/

[13] Register Boots. (n.d.). Retrieved December 03, 2020, from http://thesheetmetalkid.com/register-boots/

[14] Kopf-Werke, A. (2020, September 08). Gebhardt-Stahl GmbH. Retrieved December 03, 2020, from https://www.gebhardt-stahl.de/

[15] Displacement Ventilation vs. Mixing Ventilation. (2020, October 12). Retrieved December 03, 2020, from

https://www.simscale.com/blog/2017/12/displacement-ventilation-cfd/

[16] K-epsilon turbulence model. Retrieved from https://en.wikipedia.org/wiki/K-epsilon_turbulence_model

[17] Zang. B (2016), Aerosol transport by coughing in a depressurized and air-conditioned chamber.

https://www.wavelengthlighting.com/blog/popular-disinfection-methods-used-against-covid-19-coronavirus